New fluorinated isoxazolidines

V. F. Snegirev* and I. A. Naumenko

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117913 Moscow, Russian Federation. Fax: +7 (095) 135 5085

A simple procedure for the synthesis of fluorinated isoxazolidines from perfluoro-2-methylpent-2-ene and aliphatic aldoximes is described.

Key words: isoxazolidines, synthesis; perfluoro-2-methylpent-2-ene, aldoximes.

In this work the reactions of perfluoro-2-methylpent-2-ene (1) with aldoximes as *O*-nucleophiles have been thoroughly investigated. As in the case of alcohols, ¹ an olefin reacts with oximes only in the presence of a base.

The reaction of equimolar amounts of olefin 1, an aldoxime, and Et_3N (catalyst) affords isoxazolidines (2a-c) in moderate yields.

$$(CF_3)_2C = CFC_2F_5 + HON = CHR$$
 CF_3
 CF_3

R = Me(**a**, 52%); Et (**b**, 43%); Pr (**c**, 37%) i. NEt₃, 0 $^{\circ}$ C, diglyme

Benzaldoxime does not form the corresponding isoxazolidine (2d, R = Ph).

One can assume that the oxime anion attacks the C atom of the multiple bond in olefin 1 (Scheme 1).

Carbanion **A** is formed by the attack of the O-nucleophile, and either attaches a proton to form a type **3** adduct, or eliminates F^- to give unsaturated O-alkoxime (**B**) (path a), or is transformed to the anion of isoxazolidine (**C**) as a result of intramolecular addition * to the C=N bond (path b).

Apparently, compound **B** formed via path a is unstable and decomposes giving triethylammonium enolate (4) and nitrile (5).

When catalytic amounts of base are used, along with the major reaction products 2, 4, and 5, adducts 3 are also found; the latter are totally dehydrofluorinated if the amount of base is increased to equimolar.

Treatment of the reaction mixture with 15 % HCl transforms enolate 4 to volatile 2-hydroperfluoro-2-methylpentanone-3 (6), and nitriles 5a-c are trans-

Scheme 1

$$(CF_3)_2C=CFC_2F_5$$
 $O-N=CHR$
 $O-N=CHR$

$$(CF_{3})_{2}CF_{C}C_{2}F_{5} \xrightarrow{H^{+}} (CF_{3})_{2}CH_{CF-C_{2}F_{5}}C-C_{2}F_{5}$$

$$O-N=CHR$$

$$3a-d$$

$$R = Ph (d)$$

$$(CF_{3})_{2}C=C-C_{2}F_{5} \qquad (CF_{3})_{2}C-CF-C_{2}F_{5}H^{+}$$

$$R$$

$$C = N$$

$$NEt_{3} \qquad -H^{+}$$

$$R-C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

$$C = N + (CF_{3})_{2}C=C \qquad C_{2}F_{5} \qquad H^{+}$$

ferred to the aqueous phase. Thus, isoxazolidine 2a-c can be easily isolated by distillation.

In the case of benzaldoxime only adduct 3d was isolated in moderate yield, *i.e.*, the cyclization reaction (path b) does not proceed at all. The presence of enolate 4 and benzonitrile 5d in the reaction mixture (and ketone 6 after treatment of the reaction mixture with 15% HCl), was confirmed by ¹⁹F NMR spectroscopy, chromatography, and GC—mass spectrometry.

The structures of the new isoxazolidines 2a—c were determined unequivocally by spectral methods. Thus, in

^{*}It is known that perfluorinated carbanions are able to add to activated multiple bonds.2

Table 1. 19F NMR data for compounds 2a-c and 3d

Compound	Isomer			δ, ppn	n		J/ Hz			
		a	в	c	d	e				
2a	trans	-16.8	-12.5	2.8	41.0(A) 44.6(B)	37.4	11(a-b); $31(a-e)$; $11(a-B)$; $17(b-B)$; $5(b-e)$; $32(b-A)$; $17(c-e)$; $10(e-A)$; $288(A-B)$			
	cis	-18.1	-15.4	2.5	43.1(A) 45.3(B)	24.9	27(b-A); $9(e-A)$; $282(A-B)$; $15(c-e)$			
2b	trans	-16.9	-12.6	3.0	41.2(A) 44.5(B)	37.5	11(<i>a</i> - <i>b</i>); 30.5(<i>a</i> - <i>e</i>); 10.8(<i>a</i> -B); 16.9(<i>b</i> -B); 4.8(<i>b</i> - <i>e</i>); 31.8(<i>b</i> -A); 17(<i>c</i> - <i>e</i>); 9.8(<i>e</i> -A); 290(A-B)			
	cis	-18.0	-15.5	2.6	43.1(A) 45.3(B)	24.8	29(b-A); $9(e-A)$; $282(A-B)$; $16(c-e)$			
2c	trans	-17.1	-12.5	` '	37.3	290(A-B); 10.5(a-b); 31(a-e); 11(a-B); 17(b-B); 5(b-e); 32(b-A); 16.9(c-e); 10(e-A)				
	cis	-18.1	-15.7	2.7	43.1(A) 45.3(B)	24.8	283(A-B); $16(c-e)$; $28(b-A)$; $9(e-A)$			
3d		-17.4	-16.9	2.2	42.8(A) 44.5(B)	35.2	288(A—B); 11.4(<i>c</i> — <i>e</i>)			

Table 2. Mass spectral data for isoxazolidines 2a-c (EI, 70 eV)

Compound	Molecular	R	Isomer	$I_{\rm rel}(\%), \ m/z$										
	mass			M ⁺	[M-R] ⁺ 344	C ₂ F ₅ ⁺ 119	CF ₃ ⁺ 69	[M-30	0] ⁺ 256	Other 43	ions 42	41		
2a	359	Me	trans	8.9	13.9	15.9	21.7	100	4.9	13.9	23.1	2.2		
			cis	6.1	2.1	10.5	17.0	100	1.7	14.6	21.3	2.1		
2b	373	Et	trans	6.1	100	22.5	20.7	24.6	14.9			2.7		
			cis	3.0	21.3	20.1	32.7	100	6.3		5.2	5.3		
2c	387	Pr	trans cis	4.6 9.1	100 59.3	21.1 26.2	18.7 31.5	18.6 100	11.3 12.7	18.8 47.0	4.0 7.1	8.5 14.2		

the 19 F NMR spectra (Table 1) two sets of signals are present (*trans*- and *cis*-isomers, the ratio of which varies slightly depending on the substituent R). The chemical shifts and coupling constants are in accordance with the structures proposed. The fluorine atoms of the CF_2 group located near the chiral center give an AB spin system with J_{A-B} 290 Hz in the 19 F NMR spectra. In the 1 H NMR spectra two signals with equal intensity in the 6.2–6.5 ppm (NH) and 4.2–4.5 ppm (CH) regions are present along with the characteristic signals of alkyl radicals.

Using GC-MS the mass spectra of the cis- and trans-isomers of isoxazolidines (Table 2) were obtained. In the spectra of all of these compounds peaks of the

molecular ions M^+ and of $[M-R]^+$, CF_3^+ , and $C_2F_5^+$ are present.

The intensity of the $[M-R]^+$ peak is higher for *trans*-isomers and increases as the volume of the radical R increases: 13.9% (Me) and 100% (Et and Pr).

The most intense peaks in the MS of the *cis*-isomers are the peaks of $[M-300]^+$ ions, apparently formed by cleavage of the isoxazolidine molecule to afford "perfluoroalkenyl" and "oxime" fragments.

In all of the spectra the peak m/z 256 (5–15%) is also present, indicating the elimination of the substituents R, CF₃, and F from the molecule. This ion might have the following structure:

Experimental

The ¹⁹F and ¹H NMR spectra were obtained with a Bruker WP-200 spectrometer (188.4 and 200 MHz, respectively) relative to external standards (CF₃COOH and tetramethylsilane), and the mass spectra were measured with a VGMS 70—70e GC—MS instrument.

Reaction of perfluoro-2-methylpent-2-ene (1) with aldoximes (general procedure). Anhydrous $\rm Et_3N$ (10 g, 0.1 mol) was added dropwise with stirring at 0 °C to a mixture of perfluoro-2-methylpent-2-ene (1) (15 g, 0.05 mol), aldoxime (0.05 mol) and anhydrous diglyme (20 mL). After 1 h, the reaction mixture was washed with 15 % HCl (2 portions) and water, and dried over MgSO₄. Oxazolidines $\rm 2a-c$ were isolated by distillation.

5-Fluoro-3-methyl-5-pentafluoroethyl-4,4-di(trifluoromethyl)-1,2-oxazolidine (2a), yield 52%, b.p. 52—55 °C (10 Torr). 1 H NMR (CDCl $_3$, 8, ppm, J/ Hz): 1.5 (d, 3 H, J=6); 4.0 and 4.4 (trans- and cis-, 1 H, CH); 6.2 (br.s, 1 H, NH). Found (%): C, 27.03; H, 1.43; F, 62.79. $C_8H_5F_{12}NO$. Calculated (%): C, 26.74; H, 1.39; F, 63.51.

3-Ethyl-5-fluoro-5-pentafluoroethyl-4,4-di(trifluoromethyl)-1,2-oxazolidine (2b), yield 43%, b.p. 59–62 °C (12 Torr). ¹H NMR (CDCl₃, δ , ppm, J/Hz): 1.1 (t, 3 H, CH₃ J = 7); 1.6 and 2.0 (AB spin system, 2 H, CH₂); 3.9 and 4.4 (*transand cis*-, 1 H, CH); 6.3 (br.s, 1 H, NH). Found (%): C, 29.13; H, 1.97; F, 61.01. C₉H₇F₁₂NO. Calculated (%): C, 28.95; H, 1.88; F, 61.13.

5-Fluoro-5-pentafluoroethyl-4,4-di(trifluoromethyl)-3-propyl-1,2-oxazolidine (2c), yield 37%, b.p. 73—76 °C (10 Torr). ¹H NMR (CDCl₃, δ , ppm, J/ Hz): 1.0 (t, 3 H, CH₃, J=7); 1.6 (m. 2 H, CH₂); 1.6 and 2.0 (AB spin system, 2 H, CH₂); 3.9 and 4.4 (*trans*- and *cis*-, 1 H, CH); 6.3 (br.s, 1 H, NH). Found (%): C, 31.15; H, 2.29; F, 59.12. $C_{10}H_9F_{12}NO$. Calculated (%): C, 31.01; H, 2.33; F, 58.91.

Reaction of perfluoro-2-methylpent-2-ene (1) with benzaldoxime. The reaction of compound (1) (15 g, 0.05 mol), benzaldoxime (6 g, 0.05 mol), and Et_3N (5 g, 0.05 mol) in anhydrous diglyme (20 mL) was carried out as described above for the synthesis of **2a,b**. Distillation gave 6.9 g (33%) of O-[3-(2-trifluoromethyl-1,1,1,3,4,5,5,5-nonafluoro)pentyl]benzaldoxime (**3d**), b.p. 110-112 °C (10 Torr). 1 H NMR (CDCl₃, 8, ppm, J/Hz): 4.6 (d.hept, $1 H, CH(CF_3)_2, J=4$ and 8); 7.1–7.4 (m, 5 H, Ph); 8.0 (s, 1 H, CH=N). Found (%): C, 37.18; H, 1.63; F, 54.66. $C_{13}H_7F_{12}NO$. Calculated (%): C, 37.05; H, 1.66; F, 54.16.

References

- V. F. Snegirev and K. N. Makarov, *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1986, 106 [*Bull. Acad. Sci., USSR*, *Div. Chem. Sci.*, 1986, 35, 347 (Engl. Transl.)].
- N. I. Delyagina, E. Ya. Pervova, and I. L. Knunyants, Izv. Akad. Nauk SSSR, Ser. Khim., 1972, 376 [Bull. Acad. Sci., USSR, Div. Chem. Sci., 1972, 21, 95 (Engl. Transl.)].

Received December 13, 1993